Advances in Cardio-Oncology: Prevention and Management of Cardiovascular Complications Associated with Anticancer Therapies

Jo E. Rodgers, Pharm.D., BCPS, FAHA, FCCP, FHFSA, FNAP

Clinical Professor Associate Director, Clinical Fellowship Programs UNC Eshelman School of Pharmacy Chapel Hill, North Carolina

Sandra Cuellar, Pharm.D., BCOP

Clinical Assistant Professor University of Illinois College of Pharmacy Clinical Oncology Pharmacist Director, PGY2 Oncology Residency University of Illinois Hospital & Health Sciences System Chicago, Illinois James E. Tisdale, Pharm.D., BCPS, FACC, FAHA, FAPhA, FCCP, FNAP Professor

College of Pharmacy, Purdue University Adjunct Professor

School of Medicine Indiana University Indianapolis, Indiana

Disclosures

- James E. Tisdale:
 - CredibleMeds Volunteer (unpaid) member of the Advisory Board for the QT drugs
- Jo Ellen Rodgers:
 - Novartis Research Funding, Advisory Board
- Sandra Cuellar:
 - Genentech Speakers Bureau
 - Tesaro Speakers Bureau
- All other planners, presenters, reviewers, and ASHP staff of this session report no financial relationships relevant to this activity.

Learning Objectives

- Given a description of a specific patient receiving cancer chemotherapy, develop plans for prevention and treatment of cancer chemotherapy-associated heart failure.
- Given a description of a specific patient receiving cancer chemotherapy, develop plans for prevention and treatment of cancer chemotherapy-associated vascular toxicities such as hypertension, stroke, and coronary artery disease.
- Given a description of a specific patient receiving cancer chemotherapy, develop plans for prevention and treatment of cancer chemotherapy-associated arrhythmias.

Advances in Cardio-Oncology: Prevention and Management of Cancer Chemotherapy-Associated Heart Failure

Jo E. Rodgers, Pharm.D., BCPS, FAHA, FCCP, FHFSA, FNAP Clinical Professor Associate Director, Clinical Fellowship Programs UNC Eshelman School of Pharmacy Chapel Hill, North Carolina

Learning Objectives

- 1. Identify risk factors for chemotherapy-associated heart failure (HF) and differentiate this risk among the various chemotherapies.
- 2. Compare and contrast various diagnostic tools for identifying chemotherapy-associated HF.
- 3. Identify various strategies to minimize the risk of chemotherapyassociated HF.
- 4. Describe the role of pharmacotherapy in the primary and secondary prevention of chemotherapy-associated HF.

Question 1:

Case: A 44 year-old woman is diagnosed with HER2+ breast cancer.

She receives initial chemotherapy, which includes doxorubicin and cyclophosphamide, and is then started on HER2 inhibitor treatment with trastuzumab (Herceptin) and pertuzumab (Perjeta).

Per protocol, she undergoes an ECHO 3 months after initiation of treatment and is now found to have a LVEF 45% (pre-treament EF was 55-60%).

She has no obvious symptoms other than mild edema in her legs. Her PMH includes: HTN, DM and obesity. At this point, you should:

- A. Obtain a MUGA to confirm the EF
- B. Stop trastuzumab immediately and perform cardiac catheterization
- C. Stop trastuzumab, add furosemide, and recheck an ECHO in 1 month
- D. Continue trastuzumab and start an ACE inhibitor or beta-blocker

Indian Heart J; 2017; 69: 556-562.

Numbers Check

Proportion of women with breast cancer who had \geq 1 CVD risk factors

- 73% hypertension, 57% hyperlipidemia
- 62% with \geq 2 risk factors, 33% with \geq 3 risk factors
- Strong linear relationship between # of risk factors was associated with cardiac events

Number of hours of moderate exercise/week before a breast cancer diagnosis that was associated with a 40% lower risk of a CV event

Increased risk of death in cancer patients whose radiation shifted slightly towards their heart during therapy versus those who radiation shifted away from their heart 87%

Five

30-50%

J Clin Oncol 2018 Mar 27:JCO2017774414, ACC Abstract 1187-05, HealthDay April 23, 2018.

Risk Factors for Cardiotoxicity

Current myocardial disease

- HFrEF, HFpEF, asymptomatic LV dysfunction
- Evidence of CAD (MI, CABG)
- Valvular heart disease
- Hypertensive heart disease with LVH
- Hypertrophic, dilated, or restrictive cardiomyopathy
- Cardiac sarcoidosis
- Significant cardiac arrhythmias

Previous cardiotoxic cancer therapy

- Prior anthracycline use
- Prior radiotherapy to chest or mediastinum

Demographic and other CV risk factors

- Age
 - Pediatric population
 - Anthracyclines: > 65 years
 - Trastuzumab: > 50 years
- Family history of premature CVD (< 50 years)
- Arterial hypertension
- Diabetes mellitus
- Hypercholesterolemia

Lifestyle risk factors

- Smoking
- High alcohol intake
- Obesity
- Sedentary habit

Types of Cardiotoxicity

Zheng H et al. In: Abeloff's Clinical Oncology Review E-book, 2015.

Cancer Treatment and Cardiovascular Certificant Resources

Cancer Treatment	Cardiovascular Adverse Effect
Anthracyclines (e.g. doxorubicin, epirubicin)	Left ventricular dysfunction, heart failure, myocarditis, pericarditis, atrial fibrillation, ventricular tachycardia, ventricular fibrillation
Alkylating agents (e.g., cisplatin, cyclophosphamide)	Left ventricular dysfunction, heart failure, myocarditis, pericarditis, arterial thrombosis, bradycardia, atrial fibrillation, supraventricular tachycardia
Taxanes (e.g. paclitaxel)	Bradycardia, heart block, ventricular ectopy
Antimetabolites (e.g. 5-FU, capecitabine)	Coronary thrombosis, coronary artery spasm, atrial fibrillation, ventricular tachycardia, ventricular fibrillation
Endocrine therapy (e.g. tamoxifen, anastrozole)	Venous thrombosis, thromboembolism, peripheral atherosclerosis, arrhythmias, valvular dysfunction, pericarditis, heart failure
HER-2-directed therapies (e.g. trastuzumab)	Left ventricular dysfunction, heart failure
Cycline-dependent kinase 4/6 inhibitors (e.g. palbociclib)	QT prolongation
Radiation therapy	Coronary artery disease, left ventricular dysfunction, heart failure, valvular heart disease, pericardial disease, arrhythmias

Circulation 2018; 137:e30-e66.

D

Incidence of Cardiomyopathy

Class/Drug	Selected Indication	Heart Failure Incidence
 Anthracyclines Doxorubicin Daunorubicin Epirubicin Idarubicin Mitoxantrone 	Breast, lymphoma Leukemia Breast, gastric Leukemia Leukemia	Very common Very common Very common Very common Common
 Alkylating agents Cyclophosphamide Cisplatin Ifosfamide 	Hematologic Bladder, lung, ovarian Cervical, sarcoma	 Very common
Antimicrotubule agents - Paclitaxel - Docetaxel	Breast, lung Breast, lung	Very rare Rare
Antimetabolites - 5-Fluorouracil - Capecitabine	Gastrointestinal Colorectal, breast	Very rare

Circulation. 2015; 132:1835-1845.

Incidence of Cardiomyopathy

Class/Drug	Selected Indication	Heart Failure Incidence
Monoclonal antibody-based TKIs - Trastuzumab - Bevacizumab	Breast, gastric Colorectal	Very common Common
 Small molecule TKIs Imatinib Dasantinib Sorafenib Sunitinib Lapatinib Nilotinib Ponatinib Bortezomib 	Leukemia, GIST Leukemia, GIST RCC, HCC GIST, RCC Breast Leukemia Leukemia Multiple myeloma	Rare Rare Common Very common Rare Rare Rare Rare Rare
Other - Everolimus - Temsirolimus - Thalidomide - Lenalidomide	RCC RCC Multiple myeloma Multiple myeloma	Common Common Rare Rare

Circulation 2015; 132:1835-1845.

Anticancer Agents and Heart Failure

Chemotherapy Agents	Frequency of Use	Incidence	Chemotherapy Agents	Frequency of Use	Incidence
Anthracyclines - Doxorubicin - Epirabicin	++++ +	3-26% 1-3%	Monoclonal antibody- based TKIs - Trastuzumab	+++	2-28%
 Idarubicin Alkylating agents Cyclophosphamide 	++	5-18% 7-28%	 Bevacizumab Adotrastuzumab Pertuzumab 	+++	1-11% 2% 1-16%
- Ifosfamide	+++	17%	Small molecule TKIs		
Antimetabolites - Decitabine - Clofarabine	++ +	5% 27%	 Pazopanib Ponatinib Sorafenib Dabrafanib 	++++ + ++++	0.6-11% 3-5% 2-11%
Antimicrotubule agents - Docetaxel	++	2-8%	 Dabrafenib Sunitinib Dastinib 	++++ ++++ ++++	8-9% 1-27% 8-9%
Proteasome inhbitor - Carfizomib - Bortezomib	++ ++	7% 2-5%	- Lapatinib - Trametanib	++++ ++++	1-5% 7-11%

TKIs = tyrosine kinase inhibitors

Molecular Mechanisms of Cardiotoxicity

Anticancer Therapy	Molecular Mechanisms of Cardiotoxicity			
Anthracyclines	 Activate Necleus ToplIβ Generate ROS Activate TOPImt 	 Fe²⁺ overload Damage transcription Prevent DNA repair 		
Alkylating agents	Cause endothelial dysfunctionCause thrombosis	Direct DNA damage		
HER2/ERB2 Antibodies	Inhibit Pro-survival NRG-1/ErbB Pathway	Generate ROS		
TKIs/VEGFR Antibodies	Inhibit angiogenesisCause endothelial dysfunction	Cause energy depletion		
Antimetabolites	Inhibit angiogenesisCause endothelial dysfunction	Generate ROS		
Antimicrotubules	Inhibit microtubule formation	 Activate NCS-1 causing Ca²⁺ overload 		
Radiation therapy	Inhibit angiogenesisCause endothelial dysfunction	Cause energy depletionGenerate ROS		

HER2/ErbB2 = human epidermal growth factor receptor 2, NCS-1 = neuronal calcium sensor 1, NRG-1 = neuregulin-1, ROS = reactive oxygen species, TKIs = tyrosine kinase inhibitors, TopImt = mitochrondrial topoisomerase I, TOPII β = topoisomerase II β , VEGFR = vascular endothelial growth factor receptor.

Precision Oncology 2017; 1:31.

Magnitude, Mechanism, and Onset

Therapeutic Class	Magnitude	Evidence	Onset	Comments
 Anthracyclines Doxorubicin Dauorubicin Epirubacin Idarubacin Mitaxantrone 	Major	A A A A A	Immediate (rare), intermediate, and delayed	Irreversible; risk increases with increasing cumulative dose; delay can occur >20y after first dose
Antimicrotubule agentsPacilatexalDocetaxel	Moderate	B B	Intermediate	Separate administration of anthracycline from taxane
Monoclonal antibody- based TKIs - Trastuzumab - Pertuzumab - Bevacizumab	Major and moderate	A C A	Intermediate	Can be reversible Can be reversible Can be reversible; also HTN

Magnitude, Mechanism, and Onset

Therapeutic Class	Magnitude	Evidence	Onset	Comments
 Small molecule TKIs Lapatinib Sorafenib Sunitinib 	Major and moderate Minor Major	A B B	Intermediate	Can be reversible Associated with HTN Can be reversible; also HTN
 Alkylating Agents Cyclophosphamide Ifosfamide Mitomycin 	Major and moderate Major and moderate Moderate	B B C	Intermediate	Can be reversible; usually resolves in 3-4 weeks Can be reversible; usually resolves in 3-4 weeks Can be reversible; usually occurs after median of 3 cycles at > 30 mg/m ²
Other - Thalidomide - Lenalidomide	Minor Major	C C	Unknown Intermediate	May worsen edema Rare

Diagnostic Tools for Detection

Technique	Diagnostic Criteria	Advantages	Major Limitations
Echocardiography (ECHO) - LVEF - GLS	<u>LVEF</u> : > 10% \downarrow to a value less than 50% <u>GLS</u> : > 15% \downarrow (Note: GLS is a negative %)	 Wide availability Lack of radiation Hemodynamics, other cardiac structures 	 Inter-observer variability Image quality GLS: inter-vendor variability, technical requirements
Nuclear cardiac imaging (MUGA)	> 10% \downarrow to a value less than 50%	Reproducibility	 Cumulative radiation exposure Limited structural and functional information
Cardiac magnetic resonance	Typically used if other techniques non-diagnostic or for confirmation if LVEF borderline	 Accuracy, reproducibility Detection of diffuse myocardial fibrosis 	 Limited availability Patient adaptation
Cardiac biomarkers - Troponin I - BNP, NT-proBNP	Rise indicates pts who may benefit from ACEIs	 Accuracy, reproducibility Widely available High sensitivity 	Role for routine surveillance not clearly established

GLS = global longitudinal strain

Terminology for Criteria for Adverse Effects

A patient with an asymptomatic left ventricular ejection fraction (EF) decline from 60% to 35% may be graded as grade 0 (no event reported), grade 1 or grade 3 toxicity, depending on which adverse event term is used.

	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Heart failure		Asymptomatic with laboratory (e.g. BNP) or cardiac maging abnormalities	Symptoms with mild to moderate activity or exertion	Severe with symptoms at rest or with activity or exertion; intervention indicated	Life-threatening consequences; urgent intervention necessary	Death
LV systolic dysfunction		-		Symptomatic due to decline in EF responsive to intervention	Refractory or poorly controlled HF due to drop in EF	Death
EF declined			Resting EF 40-50%; 10-19% drop from baseline	Resting EF 20-39%; > 20% drop from baseline	Resting EF < 25%	Death

ECHO Surveillance During and After Therapy

Circulation. 2018; 137:e30-e66.

Cardiac Toxicity and Monitoring Among Chemotherapy-treated Breast Cancer Patients

Among 16,456 adults diagnosed with non-metastatic invasive breast cancer (2009-2014), cardiac toxicity was identified in <u>4.2% of patients</u>.

Risk Factor	Incidence of Cardiotoxicity	HR (95% CI)
Trastuzumab	8.3% vs 2.7%	2.01 (1.72-2.36)
Anthracyclines	4.6% vs 4.0%	1.53 (1.30-1.80)
Deyo score = 1	5.6% vs 3.4%	1.38 (1.15-1.66)
Deyo score <u>></u> 2	11.7% vs 3.4%	2.47 (1.94-3.15)
Hypertension	5.8% vs 3.3%	1.28 (1.09-1.51)
Valve disease	10.1% vs 4.0%	1.93 (1.48-2.51)

Among 4,325 patients treated with trastuzumab, guideline-adherent cardiac monitoring was identified in <u>46.2% of patients</u>. Therapies using anthracyclines (OR 1.58; 1.35-1.87), taxanes (OR 1.63; 1.27-2.08), and radiation (OR 1.22; 1.08-1.39) were associated with guideline-adherent monitoring.

Opportunities to Intervene

Circulation. 2015; 132:1835-45.

Team-based Care

*Anthracyclines, anti-HER2 therapies, VEGF or BCR-ABL targeted TKIs, proteosomal inhibitors, and thoracic radiotherapy.

Connected with GPs for symptoms/CV risk factor control

Eur Heart J. Published online August 06, 2018. doi:10.1093/eurheartj/ehy453.

American College of

Clinical Pharmacy

Prevention, Treatment & Monitoring

Oncologist	Cardiologist
 Identify high-risk patients Pre-existing heart disease, DM, HLD, HTN Young or old, female Plan for high dose anthracycline 	 Modify CV risk factors Optimize cardiac medications Optimize glucose control, diet, weight, exercise
 Order pre-treatment imaging If EF < 50% or low normal), refer to cardiologist 	 Repeat imaging studies Obtain high-quality EF Consider contrast, 3-dimensional, strain) Order biomarkers (troponin, BNP)
Adjust therapy protocols	Institute cardioprotective medications
 Monitor during therapy Monitor with ECHO at 3-month interval or Monitor with ECHO at 1-month interval if g 	, .
Withhold cardiotoxic agent as the last resort	
 Monitor after completion of therapy Obtain post-therapy ECHO in 6 months or 3 If EF remains abnormal, follow ACC/AHA H 	•

Cardiomyopathy Prevention & Management

Strategies for reducing cardiotoxicity:

Anthracycline: Dose reduction, continuous infusion, liposomal doxorubicin, dexrazoxane Trastuzumab: Avoid concomitant anthracycline VSP inhibitors: Treat hypertension

Consider cardio-protection (e.g. ACE inhibitor, beta blocker), if:

Ejection fraction (EF) < 50% or EF > 10% decline Global longitudinal strain > 15% decline (Note: GSL is a negative %) Myocardial damage (assessed via troponin)

Withhold certain cancer therapies as a last resort: Withhold anthracycline if EF < 45% Withhold trastuzumab if EF < 40%

VSP = vascular endothelial growth factor signaling pathway

J Am Coll Cardiol. 2017; 70:2536-51.

Risk Factors for Anthracycline Mediated Toxicity

• C	umulative dose				<u>Incidence</u>
• F	emale sex			ng/m ²	3-5% 7-26%
- G	ge Greater than 65 years old Vediatric population (less than 18 years)		550 m 700 m		18-48%
	enal failure		Drug <u>Relative</u> <u>H</u>		
• C	concomitant or prior radiation to the heart			<u>Toxici</u>	
- A	Concomitant chemotherapy Alkylating or antimicrotubule agents mmuno- and targeted therapies				<u>cumulative</u> <u>dose exceec</u> (mg/m ²)
	5	Dox	orubicin	1	400
	re-existing conditions Cardiac diseases associating increased wall stress	Epir	ubicin	0.7	900
	arterial hypertension	Dau	norubicin	∼0.7	75 800
<i>/</i> (

Summary of Risk Factors

At-risk therapies including any of the following:

High-dose anthracycline therapy: doxorubicin $\geq 250 \text{ mg/m}^2$ or epirubicin $\geq 600 \text{ mg/m}^2$

High-dose radiation therapy when heart is in the field of treatment: radiotherapy \geq 30 Gy

Sequential therapy: lower-dose anthracycline therapy, then subsequent trastuzumab

Combination therapy: lower-dose anthracycline with lower-dose radiation therapy

Presence of any of the following risk factors in addition to treatment with lower-dose anthracycline or traztuzumab alone:

Older age at time of cancer treatment (\geq 60 years)

2 CVD risk factors during or after cancer treatment: diabetes mellitus, dyslipidemia, hypertension, obesity, smoking

History of myocardial infarction, moderate valvular disease, or low-normal LV function (50-55%) before or during cancer treatment

Anthracyclines: Cardioprotective Strategies

Therapies	Hypothesized Mechanism
Dexrazoxane	 Decreased ROS formation via prevention of anthracycline-iron complex formation Reduced anthracycline-induced DNA damage via Top2-DNA cleavage complex inhibition
Statins	 Reduced cell death and Top2β-medicated DNA damage via Rac1 inhibition
β-blockers	 Increased prosurvival signaling via recruitment of β-arrestin and transactivation of EGFR Mitigation of oxidative stress Enhanced lusitropy
ACE inhibitors	 Attenuated oxidative stress and interstitial fibrosis Improved intracellular calcium handling Improved cardiomyocyte metabolism Improved mitochrondrial function
Exercise training	 Decreased ROS formation Reduced pro-apoptotic signaling Improved calcium handling, improved myocardial energetics via augmented AMPK activity

Anthracycline Derivatives and Infusion Protocols

- Dexrazoxane
 - Inhibits formation of drug-induced Top2α- and Top2β-DNA cleavage complexes, reducing ANT-induced DNA damage
 - interference with antitumor effects
 - potential to increase secondary leukemias
- Continuous infusion vs bolus administration
 - Lower cardiac concentrations in mice
 - Less cardiotoxicity in patients with adult sarcoma and lymphoma, but not children with ALL
- Liposomal encapsulation of anthracyclines
 - Lower rates of clinical HF and subclinical changes in LV function
 - Expensive, use restricted to ovarian cancer, AIDS-related Kaposi's sarcoma and multiple myeloma after failure of at least one initial treatment

J Am Heart Assoc. 2014; 3:e000665.

Heart. 2018; 104:971-7.

Prevention of Anthracycline-Induced CM

ACEI/ARB	СТ	Intervention	Dose	n	Follow-		Selected Endp	oints, %	
			mg/d		up, mo		$\downarrow \geq$ 10% LVEF	HF	Mortality
Geogakapoulos et al (2010)	ANT	Enalapril	11	125	12	-2.4 /-1		4.7 / 7.5	0/0
Cardinale et al (2006)	ANT^*	Enalapril	16	114	12	+0.5 / -14.5	0 / 43	0 / 24	0/3
Cadeddu, Dessi (2010, 2011)	ANT	Telmisartan	40	49	12	+2 / +1	0/0	0/0	8 / 12.5

Beta Blocker	СТ	Intervention	Dose	Dose	n	Follow-	Selected Endpoints			
			mg/d		up, mo		$\downarrow \ge 10\%$ LVEF	HF	Mortality	
Geogakapoulos et al (2010)	ANT	Metoprolol	89	125	12	-2.4 /-1		2.4/7.5	0/0	
Kalay et al (2006)	ANT	Carvedilol	12.5	50	6	-0.8 / -16.6	4 / 20	0/4	4/16	
El-Shitany et al (2012)	ANT	Carvedilol	1 mg/kg	50	1					
Kaya et al (2013)	ANT	Nevibolol	5	45	6	-1.8 / -9.1		0/0	0 /0	
ACEI/ARB + CT	Int	ervention	Dose	n	n	Follow-	Selected Endpoints			
Beta Blocker			mg/d		up, mo		$\downarrow \geq 10\%$ LVEF	HF	Mortality	

8.6 + 24 90

-0.2 / - 3.3

6

9.5 / 19

0/4.4

7/ 18

ANT = Anthracycline, ANT^{*} = Anthracycline + high dose chemotherapy

Enalapril + Carvedilol

Bosch et al (2013)

ANT*

Prevention of Anthracycline-Induced CM

Aldosterone Receptor	СТ	Intervention	Dose	n	Follow-		Selected Endpo	oints, %	
Antagonist			mg/d		up, mo		↓ <u>></u> 10% LVEF	HF	Mortality
Akpek et al (2015)	ANT	Spironolactone	25	83	6	-1.3 / -14.1	5 / 45	0/0	0/0

Statins	СТ	Intervention	Dose	n	Follow-	Selected Endpoints			
			mg/d		up, mo		$\downarrow \geq$ 10% LVEF	HF	Mortality
Acar et al (2011)	ANT	Atorvastatin	40	40	6	+1.3 / -7.9	5 / 25		

ANT = Anthracycline, ANT^{*} = Anthracycline + high dose chemotherapy

CECCY Trial

- **Purpose:** To evaluate carvedilol compared with placebo among patients with HER2-negative breast cancer undergoing anthracycline-based chemotherapy
- **Study Design:** Randomized, parallel, placebo controlled (n=192)
 - Carvedilol (n = 96) vs placebo (n = 96), titrated to 50 mg/d if tolerated
 - 24 week follow-up

Inclusion criteria:

- Women ≥18 years of age
- Invasive adenocarcinoma undergoing adjuvant or neoadjuvant chemotherapy, including an anthracycline (240 mg/m²)

CECCY Trial

Trial design: HER2-negative breast cancer, ANT-based chemotherapy Carvedilol (n = 96) vs placebo (n = 96), Follow-up: 24 weeks

<u>Results</u>

- Prevention of a ≥10% reduction LVEF at 6 months: 14.5% vs 13.5%, p=1.0
- Percentage of patients with troponin I <a>0.04: 26% vs 41.6%, p=0.003

Conclusions

- Among patients with invasive breast cancer undergoing ANT-based chemotherapy, carvedilol was not effective at preventing a reduction in LVEF.
- Carvedilol was associated with a lower frequency of detectable troponin I values.

Anti-HER2 / VEGF Inhibitor Mediated Toxicity

<u>Agent</u>	<u>Risk Factors</u>
Anti-HER2 Compounds	
Antibodies - Trastuzumab - Pertuzumab Tyrosine kinase inhibitors - Laptinib	 Previous or concomitant anthracycline treatment (short time between anthracycline and anti-HER2 treatment) Age (> 65 years) High BMI > 30 kg/m² Previous LV dysfunction Arterial hypertension Previous radiation therapy
VEGF Inhibitors	
Antibodies - Bevacizumab - Ramucirumab	 Pre-existing HF, significant CAD or left side VHD (e.g., mitral regurgitation), chronic ischemic cardiomyopathy Previous anthracycline
Tyrosine kinase inhibitors - Sunitinib, sorafenib, etc.	 Arterial hypertension Pre-existing cardiac disease

Eu Heart J. 2016; 37:2768-2801.

Targeted Therapy: Cardioprotective Strategies

Monoclonal antibody-based TKIs - Trastuzumab

Therapies	Hypothesized Mechanism
ACE inhibitors	 Decreased angiotensin-induced blockade of NRG-1/ErbB pathway
β blockers	 Increased prosurvival signaling via recruitment of β-arrestin and transactivation of EGFR
Exercise	 Enhanced NRG-1/ErbB signaling Increased myocardial Akt Inhibition of TGF-β signaling

EGFR = epidermal growth factor receptor, NRG-1 = neuregulin-1, TGF = transforming growth factor.

ACE Inhibitor & Beta Blocker with Trastuzumab

- **Purpose:** To evaluate lisinopril versus carvedilol versus placebo for prevention of cardiomyopathy among patients undergoing trastuzumab chemotherapy for breast cancer.
- Study Design: Randomized, parallel, placebo controlled (n=468)
 - Lisinopril 10 mg/d vs carvedilol CR 10 mg/d vs placebo, stratified by treatment with anthracycline
 - Duration of follow-up: 12 months

• Inclusion Criteria:

- Patients > 18 years old
- HER2-positive breast cancer, planned trastuzumab chemotherapy
- Baseline LVEF ≥ 50%
- SBP > 90 mm Hg, HR \ge 60 bpm, normal renal and hepatic function

Cardiotoxicity Definition at Time of Trial Design

Author (Year)	N	Setting	Definition
Burstein et al (2001)	40	Metastatic breast cancer	LVEF < 50% or decrease by 15%
Leyland-Jones et al (2003)	32	Metastatic breast cancer	LVEF < 40% or decrease by > 15%
Romond et al (2005)	1159	Adjuvant	LVEF < 55% or decrease by > 16%
Berstein et al (2003)	54	Metastatic breast cancer	EF < 40%
Bengala et al (2006)	53	Mixed	EF < 50%
Tan-Chiu et al (2005)	850	Adjuvant	EF decrease by 10% to < 55%
Piccart-Gebhart et al (2005)	1677	Adjuvant	EF < 50% or decrease by 10%
Venturini et al (2006)	45	Metastatic breast cancer	EF < 45% or decrease by 20%
Guarneri et al (2006)	173	Metastatic breast cancer	EF < 50% or decrease by 20%

Am Heart J. 2017;188:87-9.

ACE Inhibitor & Beta Blocker with Trastuzumab

Primary outcome (decrease in LVEF >10%):

Lisinopril 30% vs carvedilol 29% vs placebo 32% (NSS)

Secondary outcome:

Trastuzumab interruption was the same between treatment groups

https://www.dicardiology.com/content/acc-2018-late-breaking-trials

Treatment of HFrEF Stage C and D

GDMT = guideline-directed medical therapy

Radiation-induced Cardiomyopathy

Prevalence: Up to 10%

- Diastolic dysfunction > systolic dysfunction
- Right ventricle > left ventricle
- Due to fibrosis in all 3 layers of the ventricular wall, may lead to restrictive cardiomyopathy, and rarely systolic dysfunction

Diagnosis:

- Yearly: ECG, ECHO if indicated
- 5 years after radiation: ECG, ECHO
- 10 years after radiation: ECG, ECHO, stress test or coronary CT

Management:

- Identify, modify and treat CV risk factors
- Systolic dysfunction: ACEI, beta-blockade, and ARAs
- Diastolic dysfunction: optimize risk factors, exercise training

Comparison of Guidelines

Recommendations	SIOG	ESMO	ASE/EACVI	NCCN	ASCO
Identifying risk factors pre-treatment	Yes	Yes	Yes	Yes	Yes
Preventative strategies to minimize risk during therapy	Yes	Yes	No	No	Yes
Monitor for cardiactoxcity using LVEF	Yes	Yes	Yes	Yes	Yes
Use of cardiac biomarkers (troponin I, BNP)	No	Yes	Yes (troponin)	No	No
Use of ACEIs or BBs	Yes	Yes	No	No	No
Evaluation and management of CV risk factor	Yes	Yes	No	Yes	Yes
Referral to cardiologist or cardio-oncologist	Yes	Yes	Yes	Yes	Yes

SIOG: International Society of Geriatric Oncology, ESMO: European Society for Medical Oncology, ASE/EACVI: American Society of Echocardiography/ European Association of Cardiovascular Imaging, NCCN: National Comprehensive Cancer Network, ASCO: American Society of Clinical Oncology

Comparison of Guidelines

Recommendation	SIOG	ESMO	ASE/EACVI	NCCN	ASCO
Cardiac imaging of choice for cardiac monitoring	ECHO or MUGA	ECHO	ECHO	ECHO	ECHO
Timing of cardiac monitoring in asymptomatic patients	Every 2-3 cycles of ANT exposure	Adjuvant ANT and/or Traztuzumab: q3 mos during therapy, then 12 and 18 mos after initiation of therapy	Agents associated with Type 1 toxicity: completion of therapy, then 6 mos after for doses <240 mg/m ² or equivalent. <u>Trastuzumab</u> : every 3 months	Consider in high-risk patients within 1 yr of the last ANT dose	Consider in high- risk patients 6-12 mos after completion of therapy

SIOG: International Society of Geriatric Oncology, ESMO: European Society for Medical Oncology, ASE/EACVI: American Society of Echocardiography/ European Association of Cardiovascular Imaging, NCCN: National Comprehensive Cancer Network, ASCO: American Society of Clinical Oncology

https://www.acc.org/latest-in-cardiology/articles/2018/06/29/12/57/cv-toxicity-in-cancer-survivors

Question 2:

Case: A 44 year-old woman is diagnosed with HER2+ breast cancer.

She receives initial chemotherapy, which includes doxorubicin and cyclophosphamide, and is then started on HER2 inhibitor treatment with trastuzumab (Herceptin) and pertuzumab (Perjeta).

Per protocol, she undergoes an ECHO 3 months after initiation of treatment and is now found to have a LVEF 45% (pre-treament EF was 55-60%).

She has no obvious symptoms other than mild edema in her legs. Her PMH includes: HTN, DM and obesity. At this point, you should:

- A. Obtain a MUGA to confirm the EF
- B. Stop trastuzumab immediately and perform cardiac catheterization
- C. Stop trastuzumab, add furosemide, and recheck an ECHO in 1 month
- D. Continue trastuzumab and start an ACE inhibitor or beta-blocker

Eur Heart J. Published online August 06, 2018. doi:10.1093/eurheartj/ehy453.

Conclusions

- Multiple barriers to developing evidence-based guidelines for cardiotoxicity management
 - No consistent definition of *cardiotoxicity* and adverse event classification systems
 - Many studies exclude patients with underlying CVD or risk factors
 - Trials with long-term follow-up is sparse
 - Small, typically single-institution studies have inconsistent findings
- Strict management of risk factors and routine surveillance monitoring is imperative
- Large randomized studies are currently underway
 - Role of strain and biomarkers in identifying subclinical disease
 - Role of standard GDMT in primary prevention

Advances in Cardio-Oncology: Prevention and Management of Vascular Toxicities with Anticancer Therapies

Sandra Cuellar, Pharm.D., BCOP

Clinical Assistant Professor University of Illinois College of Pharmacy Clinical Oncology Pharmacist Director, PGY2 Oncology Residency University of Illinois Hospital & Health Sciences System Chicago, Illinois

Learning Objectives

- Review anticancer therapies that cause vascular toxicities
- Describe pathophysiology of anticancer therapies induced vascular toxicities
- Describe monitoring and management of vascular toxicities cause by anticancer therapy
- Describe cardiotoxicity associated with immune checkpoint inhibitors

Meet JP

55 yo female diagnosed with metastatic renal cell carcinoma

PMH significant for HTN, hypothyroidism, and depression

Meds: amlodipine 5mg daily, levothyroxine 0.75 mcg daily, and escitalopram 20 mg daily

Baseline BP: 145/92 Labs: WNL

Question 3:

Case: Oncologist would like to start pazopanib 800mg once daily today. Which of the following is the best recommendation?

- A. Hold until BP is <140/80
- B. Reduce dose to 600mg once daily
- C. Start at full dose and monitor q week
- D. Add enalapril 5mg daily and start pazopanib 800mg daily concomitantly
- E. Start enalapril 5mg daily and RTC in 1 week for assessment

Spectrum of Vascular Toxicity

- Novel anti-cancer therapies target specific molecular pathways that inhibit kinases
- Kinase inhibition
 - Critical Role in cardiovascular homeostasis

Circulation 2016;133:1272-89. *NEJM* 375;15:1457-1467.

Anticancer Agents and Hypertension

Anticancer Agent	Frequency of Use	All Grades Incidence (%)
<u>Monoclonal Antibodies (VEGF*)</u> Bevacizumab Ramurcirumab Ziv-Aflibercept	+++ + +	4-35 16 41
<u>Monoclonal Antibodies (Non VEGF)</u> Ado-trastuzumab Alemtuzumab Ofatumumab Rituximab	+ + + ++++	5.1 14 5-8 6-12
<u>mTOR inhibitors</u> Everolimus Temsolimus	++++ ++	4-13 7
<u>Proteasome Inhibitors</u> Bortezomib Carfilizomib	++ ++	6 11-17

*VEGF = vascular endothelial growth factor

J Am Coll Cardiol. 2017;70:2552-65.

Anticancer Agents and Hypertension

Anticancer Agent	Frequency of Use	All Grades Incidence (%)
Small molecule (NON VEGF TKI**)		
Ponatinib	+	68
Nilotinib	++++	10-11
Ibrutinib	++++	17
Trametinib	++++	15
Niranarih	NA	20
Copanlisib	NA	35
<u>Small molecule (VEGF TKI)</u>		
Pazopanib	++++	42
Sorafenib	++++	7-43
Sunitinib	++++	5-24
Axitinib	++++	40
Cabozantinib	NA	33-61
Regorafenib	++++	30-59
Vandetanib	NA	33
Lenvatinib	NA	42-73

VEGF TKI = vascular endothelial growth factor tyrosine kinase inhibitor

J Am Coll Cardiol 2017;70:2552-65. Lenvima (Lenvatinib)[package insert].

Eisai Inc; 2018 Zejula (niraparib [package insert].

Tesaro;2017. Aliqopa (copanlisib)[package insert]. Bayer 2017.

Phosphatidylinositol 3-kinase (PI3k)

- PI3K family
 - 3 classes exist
 - -Class I implicated in carcinogenesis via signal transduction pathways
 - 4 isoforms exist $(\alpha, \beta, \delta, \gamma)$
 - -Tissue distribution of isoforms implicate toxicity with inhibition
 - Isoform $\boldsymbol{\gamma}$ implicated in blood pressure homeostasis
 - Angiotensin II requires PI3K γ to stimulate calcium channels in smooth muscle
 - » Results in vascular contraction

PI3K Inhibitors

Drug	Inhibits α	Inhibits β	Inhibits δ	Inhibits γ	% all Grade HTN
Idelalisib (PO)			х		None
Copanlisib (IV)	ХХХ	Х	XXX	Х	35%
Duvelisib (PO)			Х	Х	None

Copanlisib

- Hypertension off target adverse event
- Grade 3 hypertension occurred in 27%
- Mean change of systolic and diastolic BP from baseline to 2 hrs
 - 16.8 mmHg and 7.8 mmHg
- Mean BP started decreasing ~ 2 hrs post infusion
- BP remained elevated for 6 to 8 hours after start of infusion

Current Opin in Pharm 2015:23;98-107.

Aliqopa (copanlisib)[package insert]. Bayer 2017.

Management

- Monitor baseline BP prior to administration
- Administer if BP <150/90 mmHg
 - − Hold if ≥150/90 mmHg
 - -2 consecutive BP measurements 15 min apart
- Check BP 30 min into infusion and again post infusion
 - If post treatment BP \geq 150/90 and requires antihypertensive tx
 - -Dose reduce copansilib

Aliqopa (copanlisib)[package insert]. Bayer 2017.

Role of Angiogenesis in Cancer

"Angiogenic Switch" : transition from pre-vascular hyperplasia tumor to highly vascularized tumor

Increased production of angiogenic stimulators: VEGF* Family

Leads to increased angiogenesis which promotes tumor survival

*VEGF: vascular endotheial growth factor

Sem in Can Bio 2009: 329-37.

Mechanism of VEGF induced HTN

VEGF Inhibition and Hypertension

- High risk (11-45%) of inducing new hypertension or destabilizing previously controlled hypertension
 - BP increase on average 10-20 mmHg systolic & 5-15 diastolic
 - Severe hypertension in 2-20% of cases
 - Uncommon to discontinue anticancer therapy due to uncontrolled HTN
- Incidence and severity depend on patient factors
 - Age, hx of HTN, CVD hx, type of cancer (renal vs non renal), drug type, dose, schedule, and other associated cancer therapies
 - Limited evidence genetic predisposition
 - No reliable markers to predict risk

VEGF Inhibition and Hypertension

- Onset is variable
 - Common w/in the first month of therapy
 - May occur within 24hrs of first dose
- Reversible
 - BP falls quickly w/in 1 week of d/c therapy
 - May not return to pre-therapy BP

- Surrogate marker for efficacy
 - Several reports note an association b/w improved antitumor efficacy & development of systolic or diastolic HTN during therapy
 - Rini BI et al HTN as biomarker for efficacy
 - Houk et al Relationship b/w sunitinb exposure & efficacy
 - Hurwitz et al Analysis of early HTN & clinical outcome
 - More studies warranted to validate HTN as predictive marker of efficacy

Oncologist. 2013:18:273. JASH, 2018:409-25. J Am Coll Cardiol. 2017;70:2552-65. Wasserstrum et al Cardio-Oncology: 2015. Cancer Chemother Pharmoacol. 2010;66:357.

Recommendations for Monitoring:

National Cancer Institute Investigational Drug Steering Committee

- Pretreatment assessment of CVD risk factors
- Identify and treat preexisting HTN before using agents
 - Goal to maintain <140/90 during therapy
 - –Lower goal in those w/ preexisting CV risk factors
- Monitor BP during therapy
 - Weekly during 1st cycle , then q2-3 weeks
- Other
 - Control Pain & review other medications that can increase BP

Management

Initiate BP treatment if BP >140/90 or diastolic increases by 20 mmHg

Hold therapy if systolic BP >160 mmHg or diastolic BP > 100 mm Hg

Consider discontinue therapy if systolic > 200 mm Hg or diastolic > 100 mm Hg or hypertensive crisis

J Am Coll Cardiol. 2017;70:2536-51.

Pharmacology Management

Optimal Anti-Hypertensive

- Not well defined
- Other considerations
 - Drug interactions
 - Comorbidities
 - Side effects

Pharmacologic Management

Resistant Cases = Add long acting nitrate

JASH 2018;409-25. J Am Coll Cardiol. 2017;70:2536-51.

Pulmonary Arterial Hypertension (PAH)

Precapillary form of pulmonary hypertension defined by \uparrow in mean pulmonary arterial pressure at least 25 mmHg at rest with pulmonary arterial wedge pressure <15 mmHg during right heart catheterization

Endothelial dysfunction w/ obliteration, proliferation, inflammation and remodeling of the small pulmonary arteries, resulting in progressive \uparrow in pulmonary vascular resistance (PVR) and progressive right ventricular failure

Brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic (NTproBNP) clinical markers used in clinical practice

Clinical presentation: exertional dysapnea, fatigue, atypical chest pain, right upper quadrant pain

Br J Clin Pharmacol 2018:84;835-45. Circulation 2016:133(13);1272-89.

PAH

Anticancer Agent	Mechanism	Frequency	Onset
Dasatinib	 Remodeling of pulmonary vessel Exudative pleural effusions, pericardial effusions Thrombosis 	11%	 May not be fully reversible (switch to another agent) Delayed onset (~8 to 40 months) No risk factors identified

Kinase/TKI	Bosutinib	Dasatinib	Imatinib	Nilotinib	Ponatinib
ABL1	100	105	83	98	101
ABL1(T315I)	93	68	9	15	100
FGFR1	79	47	0	0	101
FGFR2	95	73	3	0	100
FGFR3	83	34	1	0	101
FGFR4	3	9	8	0	98
FLT1 (VEGFR1)	97	39	5	0	101
FLT3	77	17	68	60	99
FLT4 (VEGFR3)	92	31	3	17	101
KDR (VEGFR2)	101	22	7	22	94
KIT	23	100	97	96	101
PDGFRα	77	100	98	103	103
PDGFRβ	95	99	91	93	102
SRC	96	101	5	23	102
TIE2	22	16	0	41	101

Strategies for Surveillance and Management

Baseline Assessment	 Assess Risk Factors of PAH Assess NYHA/WHO functional class Consider 6 min walk test Assess echocardiographic level of probability of PH Consider NT-proBNP
Surveillance Strategy	 Asymptomatic Assess NYHA/WHO functional class q 3 months Assess echocardiographic level q 3 months Assess indication for right heart catheterization Symptomatic Assess NHHA/WHO functional class Perform 6 min walk test Test NT-proBNP Cardiac work up Consider interruption of cancer therapy

Take Home Points

- Hypertension is the most common vascular toxicity
- Anti-VEGF mechanism leads to risk of HTN
- Onset is variable and is reversible usually w/in 7 days with anti-VEGF agents
- Assess patients for CVD risk factors
- Monitor BP weekly upon initiation
- Selection of antihypertensive depends on individual patient characteristics

Anticancer Agents and Myocardial Infarction/Ischemia

Anticancer Agent	Frequency of Use	All Grades Incidence (%)
<u>Antimetabolites</u> Capecitabine Flourouracil	++++ ++++	3-9 1-68
<u>Monoclonal Antibodies (VEGF)</u> Bevacizumab	+++	0.6-9
<u>Small Molecule TKI</u> Nilotinib Ponatinib	++++ ++	4-13 7
Immunomodulators/Angiogenesis Inhibitors Lenalidomide	++	11-17

J Am Coll Cardiol. 2017;70:2552-65.

Mechanisms of Coronary Artery Disease (CAD) in Cancer Treatment

Agent	Pathophysiological Mechanism	Risk of Coronary Artery Disease and Acute Coronary Syndrome
Fluoropyrimidines (5FU, capecitabine)	Endothelial injuryVasospasm	 Up to 18% manifest myocardial ischemia Up to 7-10% silent myocardial ischemia
BCR-ABL Ponatinib	VasospasmArterial ThrombosisAtherosclerotic event	 Maybe dose related Severe PAD* reported up to 30% Onset of PAD vary from months to years
VEGF Inhibitors	Procoagulant statusPlaque ruptureThrombosis	 Risk of arterial thrombosis 1.4 – 3.8%

*PAD – Peripheral arterial disease

Antimetabolites

Ischemia and Anticancer Therapy

- Peripheral arterial occlusive disease (PAOD)
- Rapid progressive atherosclerosis, vessel occlusions
- May consider antiplatelet, statins, ACEi, and amlodipine

- 10% ischemic events are peripheral
- Acute myocardial infarction rare

Ponatinib &

Nilotinib

VEGE

Inhibitors

Modified risk if concomitant 5FU therapy

Monitoring & Assessment

- Assessment of CAD
- Patients treated with 5FU/capecitabine
 - Consider regular ECG & hold chemo if ischemia occurs
- Drug rechallenge after coronary spasm
 - No other alternative exist
 - Consider hospital admission for close monitoring
 - Pretreatment with nitrates and/or CCB

Prevention & Management of Ischemia

Ischemia work up

• Stress test, cardiac catheterization

Treatment

- As per ACC/AHA guidelines
- Antiplatelet drugs in symptomatic PAD
 - Oncology population
 - Anemia, thrombocytopenia, other coagulation abnormalities

Cerebrovascular Events & Anticancer Therapy

Agent	Mechanism
Cisplatin	 Endothelial cell death may generate systemic pro-coagulant mediators
Methotrexate	Unknown
Bevacizumab	 Related to HTN, arterial thrombosis, and bleeding Intracranial hemorrhage 1.9% occur often with tumor progression Ischemic stroke associated with prolonged therapy(median 16 mo)
Nilotinib	 Diffuse intracranial atherosclerosis Carotid artery disease

Management

Signs/symptoms of Stroke

- Per Published guidelines
- Head CT (r/o CNS metastases)
- Cancer pts often excluded from fibrinolysis trials
 - PLT <100 contraindication for lytic therapy

Other work up

- Thrombotic etiology
- 12 lead ECG

Take Home Points

- Ischemia, cerebrovascular events, and myocardial infarction have been reported with anticancer agents
- Frequency is relatively low
- Management depends on type and severity of event
 - May require discontinuation of anticancer therapy

Anticancer Agents and Thromboembolism

Anticancer Agent	Frequency of Use	All Grades Incidence (%)
<u>Angiogenesis Inhibitors</u> Lenalidomide Pomalidomide	+++ +	3-75 3
<u>Histone deacetylase Inhibitor</u> Vorinostat	++++	5-8
<u>mTOR inhibitors</u> Everolimus	++++	1-4
Small Molecule TKI Axitinib Erlotinib Nilotinib Pazopanib Ponatinib Sunitinib Trametinib Ziv-aflibercept	+++++ +++++ +++++ + +++++ +++++ +++++ ++++	3 7 4-11 1-5 5 3 7 9

J Am Coll Cardiol. 2017;70:2552-65.

Cancer Related Risk Factors

- Pancreas, brain, stomach, kidney, lung, lymphoma, myeloma
- Histology (adenocarcinoma)
- Metastatic disease
- Initial period after cancer diagnosis

Patient Related Risk Factors

- Age, gender, ethnicity
- Comorbidities
- Hx of venothromboembolism
- Low performance status

Treatment Related Risk Factors

- Major surgery
- Hospitalization
- Anticancer Therapy
- Hormonal Therapy
- Transfusions
- Central venous catheter

Management

- No systematic screening recommended
- Prophylaxis indicated in high risk myeloma patients based on IMWG guidelines & NCCN guidelines
- Treatment of VTE
 - Preferred LMWH
 - Assess bleeding risk
 - NOAC data limited in cancer patients
- Duration of therapy may be indefinite
- Continuation of anticancer therapy
 - Depends on grade of event
 - Grade 3 or 4 discontinue therapy
 - Depends on risk versus benefit

Take Home Points

- VTE is a common occurrence in cancer patients

 Etiology is multifactorial
- Treatment considerations
 - Pt baseline platelets, weight, renal function, hx of HIT
- Duration of therapy
 - 3 to 6 months to indefinite
- Discontinuation of anticancer therapy
 - Risk versus benefit
 - Severity of event

J Am Coll Cardiol. 2017;70:2552-65. NCCN Cancer Associated Thromboembolic Disease v2.2018.

Algorithm For Vascular Toxicity Management

Vascular Toxicities of Cancer Therapies, Volume: 133, Issue: 13, Pages: 1272-1289, DOI: (10.1161/CIRCULATIONAHA.115.018347)

Immune Checkpoint Inhibitors (ICI) & Cardiotoxicity

Drug	Target	Cardiotoxic Effects
Ipilumumab	CTLA-4	Pericarditis: <1% Myocarditis: 0.2%
Nivolumab	PD-1	Myocarditis: <1%
Pembrolizumab	PD-1	Cardiac Failure: 0.4%
Atezolizumab	PD-L1	Myocardial infarction
Avelumab	PD-L1	Myocarditis
Durvalumab	PDL-1	Myocarditis: <1%

Other cardiac clinical sub-types toxic effects:

- Pericarditis
- Atrioventricular block
- Heart failure
- Ventricular arrhythmias

- Acute myocardial infarction
- Takotsubo syndrome

Lancet Oncology 2018:19:e447-58.

Immune Checkpoint Inhibitors (ICI) & Cardiotoxicity

- Rare events reported in clinical trials
 - 50% of ICI myocarditis reported were fatal
- Incidence is > with CTLA-4 plus PD-1 (0.26%)
- Moslehi et al
 - Review of 101 cases of ICI mediated cardiotoxicity
 - 64% occurred after first or second dose
 - 76% w/in first 6 weeks of treatment
- Escudier et al
 - Review of 30 cases of ICI mediated cardiotoxicity
 - Median time to onset ~ 65 days, ranged from 2 days to 454 days
- Mahmood et al
 - Review of 35 cases of ICI mediated cardiotoxicity
 - Median time to onset ~34 days

ICI Mechanisms of Cardiotoxicity

- Cardiomyocytes express PD-L1
 - Cardioprotective mechanism against immune response
- T-cells could be targeting antigens shared by tumor, skeletal muscle, and heart
 - Autoimmune T-cell mediated cardiotoxic effects
- Emerging pre-clinical data suggest role of T cells in the progression of pressure overloaded hypertrophy to heart failure
 - Direct inhibitor of PD-L1 may accelerate pre-existing heart disease & potentially cause nonflammatory cardiomyocyte dysfunction in diseased hearts even in absence of immune response

Management

*depends on severity of cardiac event & consulting cardio-oncologist

Lancet Oncology 2018:19:e447-58.

ICI Cardiotoxicity Summary

- Rare adverse event
 - consequences are serious and sometimes fatal
- Mechanisms are not fully elucidated
- Monitoring strategies
 - No evidence based algorithm exists
 - Proposed surveillances strategies
 - Monitor ECG, cardiac troponin, BNP, and Echocardiogram
 - » More aggressive monitoring if high risk patients
- Management
 - Conventional cardiac measures and immunosuppression

Summary

Vascular toxicities from anticancer therapy occur more commonly with novel targeted agents compared to classic chemotherapy

Vascular toxicities include: hypertension, coronary artery disease, cerebrovascular events, and thromboembolic disease

Knowledge of etiology, onset, and management of vascular toxicity is vital for pharmacists to optimize safety and efficacy of anticancer therapy

Advances in Cardio-Oncology: Prevention and Management of Cancer Chemotherapy-Associated Arrhythmias

James E. Tisdale, Pharm.D., BCPS, FACC, FAHA, FAPhA, FCCP, FNAP

Professor

College of Pharmacy, Purdue University

Adjunct Professor

School of Medicine Indiana University

Indianapolis, Indiana

Cancer Chemotherapy-Associated Arrhythmias Learning Objectives

- 1. Describes the types of arrhythmias that may be caused by cancer chemotherapy drugs.
- 2. Describe the pathophysiology and adverse outcomes associated with cancer chemotherapy-associated arrhythmias.
- 3. Describe strategies for prevention and management of cancer chemotherapy-associated arrhythmias.

- Types of arrhythmias induced by cancer chemotherapy drugs:
 - Sinus bradycardia/AV block
 - Premature atrial complexes (PACs)
 - Sinus tachycardia
 - Atrial fibrillation
 - Supraventricular tachycardia (SVT)
 - Premature ventricular complexes (PVCs)
 - Ventricular tachycardia
 - QT interval prolongation/Torsades de pointes (TdP)

- Types of arrhythmias induced by cancer chemotherapy drugs:
 - Sinus bradycardia/AV block
 - Premature atrial complexes (PACs)
 - Sinus tachycardia
 - Atrial fibrillation
 - Supraventricular tachycardia (SVT)
 - Premature ventricular complexes (PVCs)
 - Ventricular tachycardia
 - QT interval prolongation/Torsades de pointes (TdP)

- Sinus bradycardia/AV block
- Atrial fibrillation
- Ventricular tachycardia
- QT interval prolongation/Torsades de pointes (TdP)

ECG Characteristics of Sinus Bradycardia

- Sinus bradycardia
 - Regular rhythm
 - Heart rate < 60 bpm
 - \circ PR intervals constant

ECG Characteristics of AV Blocks

- 2nd degree AV block (Mobitz Type 1)
 - Regularly irregular
 - Heart rate < 60 bpm
 - Progressively prolonging
 PR intervals until QRS
 complex is lost

- 2nd degree AV block (Mobitz Type 2)
 - Often regular
 - Heart rate < 60 bpm
 - \circ PR intervals constant
 - \circ QRS complex lost every 2nd, 3rd, 4th beat

ECG Characteristics of AV Blocks

- 3rd degree AV block (complete heart block, AV dissociation)
 - Regular rhythm
 - Heart rate < 60 bpm
 - P-P intervals constant
 - \circ R-R intervals constant
 - $\,\circ\,$ No relationship between P waves and QRS complexes

Signs/Symptoms of Sinus Bradycardia/AV Block

- Dizziness
- Lightheadedness
- Hypotension
- Syncope
- Not associated with mortality

• Unless occurs while driving, operating machinery

Cancer Chemotherapy-Associated Sinus Bradycardia/AV Block

Drug class	Drugs within class	Incidence	Proposed Mechanism(s)
Anthracyclines	Daunorubicin Doxorubicin Epirubicin Idarubicin Mitoxantrone	1-10% (for the class)	Direct sinus/AV node fibrosis Conduction system damage 2º to microangiopathy Immune reaction/hypersensitivity
Antimetabolites	Capecitabine 5-FU Cytarabine Fludarabine	1-10% 12% (SB) NK NK	Direct injury to sinus/AV node Myocardial ischemia Release of vasoactive compounds
HER2 inhibitors	Pertuzumab	< 1%	NK
MET inhibitors	Tivantinib	21%	NK
Immunomodulatory drugs	Thalidomide	26-53%	NK
Platinum compounds	Cisplatin	NK	NK – direct sinus node damage?

NK = Not known; SB = Sinus bradycardia

Drug Saf 2015;38:129-52.

Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

Cancer Chemotherapy-Associated Sinus Bradycardia/AV

Block					
Drug class	Drugs within class	Incidence	Proposed Mechanism(s)		
Taxanes	Paclitaxel	3-29% (SB) Up to 4.4% (AVB)	Stimulation of H ₁ and H ₂ receptors Direct damage to sinus/AV node		
Topoisomerase inhibitors	Irinotecan	NK	NK		
Tyrosine kinase inhibitors	Alectinib Ceritinib Crizotinib Ponatinib	5.1% (SB); 2.8% (AVB) 1-10% 31% <1%	NK		

5%

<1%

AVB = AV block; NK = Not known; SB = Sinus bradycardia

Dovitinib

Vemurafenib

VEGF inhibitors

Drug Saf 2015;38:129-52. Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443 Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

NK

as

American College of Clinical Pharmacy

Management of Cancer Chemotherapy-Associated Sinus Bradycardia/AV Block

- Majority of patients are asymptomatic
- For symptomatic patients:
 - Consider alternative therapy
 - $\,\circ\,$ If no suitable alternative therapy, monitor patient closely
 - Consider isoproterenol
 - Consider temporary pacemaker
 - For thalidomide-induced bradycardia with no suitable alternative therapy, permanent pacemaker implantation may be required to allow continuation of therapy

- Sinus bradycardia/AV block
- Atrial fibrillation
- Ventricular tachycardia
- QT interval prolongation/Torsades de pointes (TdP)

- ECG characteristics:
 - Irregularly irregular
 - $\,\circ\,$ No visible p waves
 - \circ Undulating baseline
 - QRS complexes normal or narrow
 - Heart rate 100-200 bpm

- Signs/Symptoms:
 - May be asymptomatic
 - Palpitations
 - \circ Fatigue
 - Dizziness
 - Dyspnea
 - Hypotension
 - Syncope
 - Heart failure

- Morbidity/Mortality:
 - Stroke/systemic embolism risk increased 3-7x
 - Heart failure risk increased 3x
 - \circ Dementia risk increased 2x
 - \circ Mortality risk increased 2x

Drug class	Drugs within class	Incidence	Proposed Mechanism(s)
Alkylating agents	Cyclophosphamide Melphalan Busulfan* Anthracyclines	1-10% 6.6-22.5% ≤ 6.4% 1.4-13.8%	Conduction system damage 2 ^o to microangiopathy Atrial hypertrophy & fibrosis Accumulation of reactive oxygen species Activation of pro-inflammatory pathways
Antimetabolites	Capecitabine Clofarabine 5-FU Gemcitabine	NK 7.4-19% NK 8.2%	Myocardial ischemia Release of vasoactive compounds Immune-mediated atrial damage Atrial fibrosis
Histone deacetylase inhibitors	Interleukin-2	4.3-8.0%	NK
Immunomodulatory drugs	Lenalidomide Thalidomide	4.6-7% 1.3%	NK
Platinum compounds	Cisplatin	12-18%¶	Coronary vasospasm Direct pericardial irritation Hypomagnesemia LV dysfunction Mitochondrial dysfunction Promotion of inflammation

LV = Left ventricular NK = Not known *In combination with 5-FU ¶Intrapericardial

Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

Pharmacol Ther 2018; Apr 24. pii: S0163-7258(18)30072-X.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

Drug class	Drugs within class	Incidence	Proposed Mechanism(s)
Taxanes	Docetaxel Paclitaxel	NK 1-1.7%	Stimulation of H ₁ and H ₂ receptors Myocardial ischemia
Tyrosine kinase inhibitors	Irutinib Ponatinib	5-7% 5%	PI3K-AKT signaling inhibition, leading to increases in late sodium current and decreases in L-type calcium current
Other monoclonal antibodies	Alemtuzumab Rituximab	NK NK	NK
VEGF inhibitors	Sorafenib* Vemurafenib	Up to 5.1% 1.5%	NK
Other drugs	Amsacrine	NK	NK

NK = Not known

PI3K = Phosphoinositide 3 kinase

*In combination with 5-FU

Drug Saf 2015;38:129-52.

Circ Arrhythm Electrophysiol. 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

Pharmacol Ther. 2018; Apr 24. pii: S0163-7258(18)30072-X.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

Prognostic Significance of Cancer Chemotherapy -Associated Atrial Fibrillation

- 15/249 (6%) of patients with Non-Hodgkin's lymphoma treated with anthracyclines developed AF
- Mean followup of 34 months after development of AF

Outcome		AF (n=15)	No AF (n=234)	р
Incidence of acute HF		40%	3.8%	< 0.001
Incidence of all-cause mortality		60%	14.1%	<0.001
			01)	
Influence of AF on Outcome Hazard		ratio (95% (
Acute HF 12.78 (3		3.36-52.96)		
All-cause mortality 4.77 (2.0		.03-10.28)		

Management of Cancer Chemotherapy-Associated Atrial Fibrillation

- Implement alternate chemotherapy if possible
- Ventricular rate control:
 - \circ β -blocker or nondihydropyridine CCB
 - $\,\circ\,\,\beta\text{-blocker}$ and/or digoxin in patients with HFrEF
- Rhythm control:
 - Direct current cardioversion if hemodynamically unstable
 - Individualized antiarrhythmic treatment if rate control not sufficient to control symptoms

Management of Cancer Chemotherapy-Associated Atrial Fibrillation

- Anticoagulation:
 - CHA₂DS₂-VASc and HAS-BLED scores have not been validated in patients with cancer
 - In patients with CHA₂DS₂-VASc score > 2, anticoagulation can be considered if platelet count is > 50,000/mm³
 - Vitamin K antagonist can be used if INR stable, otherwise NOAC
 - LMWH recommended over warfarin in patients with metastatic disease and high bleeding risk
 - Role and safety of NOACs in patients with cancer requires clarification

Meta-Analysis of Safety and Efficacy of NOACs Compared to VKA in Patients with VTE and Cancer

- n=4 RCTs included
- n=759 patients with active cancer

Endpoint	OR	95%
Efficacy (Recurrent VTE)	0.56	0.29-1.08
Safety (Minor and major bleeding)	0.88	0.57-1.35

Cancer Chemotherapy-Associated Arrhythmias

- Sinus bradycardia/AV block
- Atrial fibrillation
- Ventricular tachycardia
- QT interval prolongation/Torsades de pointes (TdP)

Cancer Chemotherapy-Associated Ventricular Tachycardia

- ECG Characteristics
 - \circ Regular
 - P waves not visible
 - Wide QRS complexes
 - Heart rate 100-250 bpm

- Signs/Symptoms
 - May be asymptomatic (nonsustained VT)
 - Palpitations
 - Hypotension
 - Dizziness
 - Lightheadedness
 - \circ Syncope
 - Angina
 - Mortality
 - May degenerate into ventricular fibrillation, causing sudden cardiac death

Cancer Chemotherapy-Associated Ventricular Tachycardia

Drug class	Drugs within class	Incidence	Proposed Mechanism(s)
Alkylating agents	Anthracyclines	NK	Conduction system damage 2° microangiopathy Direct myocyte damage Myocardial ischemia Increases amplitude of L-type calcium current, prolonging ventricular APD
Antimetabolites	5-FU	3.7-7.4%	Myocardial ischemia/coronary vasospasm Release of vasoactive compounds Direct myocardial damage
Antimicrotubule agents	Arsenic trioxide	NK	Increases cardiac calcium current, prolongs ventricular APD
Histone deacetylase inhibitors	Interleukin-2	NK	NK
HER2 inhibitors	Pertuzumab	NK	NK

APD = Action potential duration; NK = Not known

Drug Saf 2015;38:129-52 Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

J Am Coll Cardiol 2018;72:697-8.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

Cancer Chemotherapy-Associated Ventricular Tachycardia

Drug class	Drugs within class	Incidence	Proposed Mechanism(s)
HER2 inhibitors	Pertuzumab	NK	NK
Immune checkpoint inhibitors	Nivolumab	NK	NK
Platinum compounds	Cisplatin	NK	NK
Tyrosine kinase inhibitors	Dasatinib Ibrutinib	NK 596/100,00 person-years*	NK

*Includes PVCs and VF

NK = Not known

Drug Saf 2015;38:129-52.

Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443

J Am Coll Cardiol 2018;72:697-8.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

Treatment of Ventricular Tachycardia

• Per guidelines

J Am Coll Cardiol 2018;72:e91-220.

Cancer Chemotherapy-Associated Arrhythmias

- Sinus bradycardia/AV block
- Atrial fibrillation
- Supraventricular tachycardia (SVT)
- Ventricular tachycardia
- QT interval prolongation/Torsades de pointes (TdP)

Chocolate & Crème and Golden Raisin & Crème Torsades Flaky croissant with French pastry crème

- Chief complaint:
 - A 70-year old man was admitted to the ED after recurrent syncope
- History of Present Illness:

Two recent episodes of syncope were diagnosed as seizures, and he was initiated on levitiracetam 500 mg tid

- Past Medical History:
 - > Coronary artery disease
 - Metastatic cholangiocarcinoma

- Medications PTA:
 - > Acetylsalicyclic acid 100 mg once daily
 - Metoprolol 25 mg twice daily
 - > Vandetanib 300 mg once daily
- Physical exam and laboratory values:
 - > Unremarkable
- Past Medical History:
 - > Coronary artery disease
 - Metastatic cholangiocarcinoma

• Transthoracic echocardiogram:

Normal left ventricular function

- ECG:
 - Sinus bradycardia (46 bpm)
 - **>** QTc = 523 ms
- Telemetry not available; 3-channel Holter monitor recording was initiated:
 - During Holter recording, patient experienced recurrent episodes of syncope

- Telemetry not available; 3-channel Holter monitor recording was initiated:
 - > Holter recording revealed 28 episodes of TdP
 - One TdP episode degenerated into VF, but terminated spontaneously after briefly re-organizing back into TdP

Cancer Chemotherapy-Associated QT Interval Prolongation/Torsades de Pointes

- QT drugs list at <u>www.crediblemeds.org</u>
- Categories of QT-prolonging drugs that may cause TdP:

Category	Definition
Known risk	Prolong the QT interval AND are clearly associated with a known risk of TdP, even when taken as recommended
Possible risk	Can cause QT prolongation BUT currently lack evidence for a risk of TdP when taken as recommended
Conditional risk	Are associated with TdP BUT only under certain conditions (eg excessive dose, hypokalemia, interacting drugs) OR by creating conditions that facilitate or induced TdP (inhibit metabolism of a QT-prolonging drug or cause electrolyte disturbances)
Drugs to avoid in CLQTS	Pose a high risk of TdP for patients with CLQTS and include all those drugs in the above 3 categories plus additional drugs that do not prolong the QT interval per se but which have a special risk because of their other actions

Cancer Chemotherapy-Associated QT Interval Prolongation/Torsades de Pointes

Drug class	Drugs within class	Incidence	Crediblemeds category	Proposed Mechanism(s)
Alkylating agents	Bendamustine	NK	Possible	NK
Anthracyclines	Daunorubicin Doxorubicin Epirubicin Idarubicin Mitoxantrone	11.5% for the class	NC NC Possible NC NC	Intracellular calcium dysregulation I _{Ks} inhibition
Antimetabolites	Capecitabine 5-FU	NK NK	Possible Possible	Myocardial ischemia due to coronary vasospasm
Antimicrotubule agents	Arsenic trioxide Eribulin	2.5% (TdP)	<u>Known</u> Possible	I_{Kr} and I_{Ks} inhibition
Cyclin-dependent kinase inhibitors	Ribociclib	NK	Possible	I _{kr} inhibition

NC = Not classified; NK = Not known Bold type signifies black box warning for QTc/TdP Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443

Pharmacol Ther 2018; Apr 24. pii: S0163-7258(18)30072-X

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

www.crediblemeds.org

Cancer Chemotherapy-Associated QT Interval Prolongation/Torsades de Pointes

Drug class	Drugs within class	Incidence	Crediblemeds category	Proposed Mechanism(s)
GnRH receptor antagonists	Degarelix Leuprolide	NK NK	Possible Possible	Testosterone deprivation
Histone deacetylase inhibitors	Panobinostat Romidepsin Vorinostat	8.6-28% NK NK	Possible Possible Possible	I _{kr} inhibition
Monoclonal antibodies	Inotuzumab Necitumumab*	NK NK	Possible Possible	NK
Platinum compounds	Oxaliplatin	NK	<u>Known</u>	Impairment of potassium and magnesium homeostasis
Proteasome inhibitors	Bortezomib	NK	Possible	NK
HER2 inhibitors	Lapatinib	6.2%	Possible	I _{kr} inhibition
for hypomagnesemia		Circ A	rrhythm Electrophysic	ol 2017;10:e005443. DOI: 10.116

*Black box warning for hypomagnesemia

NC = Not classified; NK = Not known

Bold type signifies black box warning for QTC/TdP

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

www.crediblemeds.org

Pharmacol Ther 2018; Apr 24. pii: S0163-7258(18)30072-X.

Cancer Chemotherapy-Associated QT Interval Prolongation/Torsades de Pointes

Drug class	Drugs within class	Incidence	Crediblemeds category	Proposed Mechanism(s)
Tyrosine kinase inhibitors	Bosutinib Cabozantinib Ceritinib Crizotinib Dabrafenib Dasatinib Lenvatinib Midostaurin Nilotinib Osimertinib Pazopanib	0.2% NK 4% 3.5% NK 1% 1.5% 4.7-6.3% 2.1% 0.2% 1-2%	Possible Possible Possible Possible Possible Possible Possible Possible Possible Possible Possible	PI3K-AKT signaling inhibition, leading to increases in late sodium current and decreases in L-type calcium current

NK = Not known

PI3K = Phosphoinositide 3 kinase

Bold type signifies black box warning for QTc/TdP

Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

Pharmacol Ther 2018; Apr 24. pii: S0163-7258(18)30072-X.

Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018.

www.crediblemeds.org

Cancer Chemotherapy-Associated QT Interval Prolongation/Torsades de Pointes

Drug class	Drugs within class	Incidenc e	Crediblemeds category	Proposed Mechanism(s)
VEGF inhibitors	Sorafenib Sunitinib Vandetanib Vemurafenib	NK 0.5% 7-14% 1.5-3.0%	Possible Possible <u>Known</u> Possible	I _{kr} inhibition
Other	Trifluridine and tipiracil Toremifene	NK NK	Possible Possible	NK

NC = Not classified; NK = Not known Bold type signifies black box warning for QTc/TdP

> Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443. Pharmacol Ther 2018; Apr 24. pii: S0163-7258(18)30072-X. Tisdale JE, Miller DA, eds. Drug-Induced Diseases. Prevention, Detection and Management, 3rd ed. ASHP, 2018. www.crediblemeds.org

• Which of this patient's medications likely caused QTc interval prolongation and TdP?

Risk Factors for Torsades de Pointes

- QTc interval > 500 ms
- Increases in QTc interval > 60 ms from baseline
- Age > 65 years
- Female sex
- Acute MI
- HF with reduced EF
- Hypokalemia
- Hypomagnesemia
- Hypocalcemia

- Bradycardia
- Treatment with diuretics
- Concurrent administration of > 1 QT-prolonging drug
- Elevated plasma concentrations of QT-prolonging drugs
 - Inadequate dose adjustment for kidney or liver disease
 - $\circ~$ Rapid IV infusion
 - PK drug interactions

• What risk factors did this patient have for TdP?

Monitoring and Prevention of QT Interval Prolongation/TdP Associated with Cancer Chemotherapy

- 12-lead ECG should be obtained and QTc interval measured in all patients at baseline
- Repeated 12-lead ECGs should be performed in patients with:
 - A history of QT prolongation
 - Relevant cardiac disease
 - Bradycardia
 - Thyroid dysfunction
 - Electrolyte abnormalities
 - Treated with QT-prolonging drugs

Monitoring and Prevention of QT Interval Prolongation/TdP in Patients Receiving Arsenic Trioxide

- At baseline, obtain:
 - 12-lead ECG

○ Serum K⁺, Mg²⁺, Ca²⁺, creatinine

• At baseline:

Discontinue other concomitant QT-prolonging drugs

- During therapy:
 - Maintain serum K⁺ > 4.0 mEq/L
 - Maintain serum Mg²⁺ > 1.8 mg/dL
 - If QTc > 500 ms:
 - Correct risk factors where possible
 - Reconsider risk/benefit of arsenic therapy

- Patient management:
 - > Patient was admitted to coronary care unit
 - Received MgSO4, lidocaine, and transvenous ventricular overdrive pacing
 - Metoprolol, levetiracetam and vandetanib were discontinued
- No further recurrences of TdP
- ECG on hospital day 11 showed normal QTc

Monitoring and Prevention of QT Interval Prolongation/TdP Associated with Cancer Chemotherapy

- Consider treatment discontinuation or alternative regimens if the QTc is > 500 ms, QT prolongation is > 60 ms or arrhythmias occur
- Conditions known to provoke TdP, especially hypokalemia and extreme bradycardia should be avoided in patients with drug-induced QT prolongation
- Exposure to other QT-prolonging drugs should be minimized in patients treated with potentially QT-prolonging chemotherapy

Sudden Cardiac Death Associated with Cancer Chemotherapy

Drug class	Drugs within class	Incidence	Reported Cause of Death
Anthracyclines	Daunorubicin Doxorubicin Epirubicin Idarubicin Mitoxantrone	NK	Unspecified ventricular arrhythmias
Antimetabolites	Capecitabine 5-FU	NK NK	Unspecified ventricular arrhythmias
Antimicrotubule agents	Arsenic trioxide		Torsades de pointes
Histone deacetylase inhibitors	Romidepsin Interleukin-2	1.5-4%	Unspecified ventricular arrhythmias
Tyrosine kinase inhibitors	Nilotinib	0.6%	Unspecified ventricular arrhythmias
Other monoclonal antibodies	Cetuximab Necitumumab	2% 2.5-3.0%	Unspecified ventricular arrhythmias Hypomagnesemia?
VEGF inhibitors	Vandetanib	NK	Torsades de pointes

NK = Not known

Bold type indicates sudden cardiac death included in black box warning

Circ Arrhythm Electrophysiol 2017;10:e005443. DOI: 10.1161/CIRCEP.117.005443.

Cancer Chemotherapy-Associated Arrhythmias

Summary and Conclusions

- Cancer chemotherapy can cause a wide variety of arrhythmias, including sinus bradycardia, AV block, atrial fibrillation supraventricular tachycardia, ventricular tachycardia, and QT interval prolongation/torsades de pointes
- ECG monitoring is recommended for patients at rick for cancer chemotherapy-associated arrhythmias
- Attention to risk factors for QT interval prolongation/TdP may aid in reducing the risk

Questions?